Regeneration in MRL mice: further genetic loci controlling the ear hole closure trait using MRL and M.m. Castaneus mice.

نویسندگان

  • Ellen Heber-Katz
  • Pan Chen
  • Lise Clark
  • Xiang-Ming Zhang
  • Scott Troutman
  • Elizabeth P Blankenhorn
چکیده

The MRL mouse has been shown to display an epimorphic regenerative response after ear hole punching leading to complete closure within 30 days and cartilage regrowth. The regenerative capacity of the MRL has also been seen after a severe cryoinjury to the heart leads to complete healing without scarring and functional myocardium. The wound healing ear hole closure response that occurs in MRL mice has been shown to be genetically controlled. We have previously identified 11 quantitative trait loci (QTL) that govern healing in an intercross of (MRL x C57BL/6 J) mice. However, it is desirable to use another poorly healing mouse strain to elucidate the full range of genetic factors that affect this important process. In the current study, we have used an inbred subspecies of the mouse, M. castaneus, and have confirmed a number of loci identified previously. In addition, we report three new healing QTL. Furthermore, in this strain combination, we note a strong sexual dimorphism also observed in the MRL x C57BL/6 cross, both in the healing trait and in the QTL that control it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic analysis of a mammalian wound-healing trait.

Wound healing of mammalian tissue is an essential process in the maintenance of body integrity. The general mechanism of wound healing usually studied in adult mammals is repair, in contrast to the regeneration seen in more primitive vertebrates. We recently have discovered that MRL/MpJ mice, unlike all other strains of mice tested, undergo rapid and complete wound closure that resembles regene...

متن کامل

Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals.

Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas othe...

متن کامل

Enhanced Functional Recovery in MRL/MpJ Mice after Spinal Cord Dorsal Hemisection

Adult MRL/MpJ mice have been shown to possess unique regeneration capabilities. They are able to heal an ear-punched hole or an injured heart with normal tissue architecture and without scar formation. Here we present functional and histological evidence for enhanced recovery following spinal cord injury (SCI) in MRL/MpJ mice. A control group (C57BL/6 mice) and MRL/MpJ mice underwent a dorsal h...

متن کامل

Lack of p21 expression links cell cycle control and appendage regeneration in mice.

Animals capable of regenerating multiple tissue types, organs, and appendages after injury are common yet sporadic and include some sponge, hydra, planarian, and salamander (i.e., newt and axolotl) species, but notably such regenerative capacity is rare in mammals. The adult MRL mouse strain is a rare exception to the rule that mammals do not regenerate appendage tissue. Certain commonalities, ...

متن کامل

Heart regeneration in adult MRL mice.

The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 2004